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OBSTRUCTION-AWARE CACHE
MANAGEMENT

TECHNICAL FIELD

This disclosure relates to data management in computing
devices, and in particular, to cache data management in ran-
dom access memory.

BACKGROUND

As the number of cores increases in modern processors,
increases in memory subsystem performance are desirable to
ensure that throughput is not hampered by latency during read
and/or write cycles. Currently available processors are
equipped with increasingly deep cache hierarchies and larger
cache capacities. Cache memories on conventional proces-
sors are typically implemented using static random access
memory (SRAM) and/or embedded dynamic random access
memory (DRAM).

SUMMARY

This disclosure features methods and systems for imple-
menting obstruction-aware cache management policies in a
variety of memory architectures. The methods and systems
disclosed herein can be used, for example, in last-level caches
that are implemented using spin-torque transfer random
access memory (STT-RAM). By monitoring for obstructions
and directing read and/or write requests, the methods and
systems disclosed herein can reduce latencies that would
otherwise arise in memory due to such requests. In addition to
managing requests to cache memory from a single processing
core, the methods and systems disclosed herein can also
manage requests from multiple cores to ensure that the cores
do not block one another from accessing a shared cache
memory.

In general, in a first aspect, the disclosure features an elec-
tronic processor that includes a cache memory unit, n proces-
sor cores where nzl1, a controller connected to the cache
memory unit and to each of the n processor cores, and n
obstruction monitoring units, where each obstruction moni-
toring unit is connected to the controller and to a different one
of'the n processor cores, where during operation of the elec-
tronic processor, each obstruction monitoring unit is config-
ured to detect an obstruction corresponding to an operation
from the processor core connected to the obstruction moni-
toring unit before the operation executes in the cache memory
unit.

Embodiments of the electronic processor can include any
one or more ofthe following features. During operation of the
electronic processor, the controller can be configured to pre-
vent operations that correspond to obstructions detected by
the n obstruction monitoring units from executing in the
cache memory unit. The number n can be 2 or more (e.g., 4 or
more).

Each of the n processor cores can be connected in parallel
with the controller and with one of the n obstruction moni-
toring units. Each obstruction monitoring unit can be config-
ured to detect an obstruction corresponding to an operation by
comparing a miss rate for the operation to an obstruction
threshold value. Each obstruction monitoring unit can be
configured to determine the obstruction threshold value
OAP,, according to:
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(RD-Try + WR-Tw,)/ (RD + WR)
Titem + Twr

Thtem —

OAPy, =

where T, ,,, is anaverage latency of a memory unit connected
to the processor, Ty, is an average latency of read operations
executed in the cache memory unit, T, is an average latency
of'write operations executed in the cache memory unit, RD is
a number of read accesses to the cache memory unit during a
sampling period, and WR is a number of write accesses to the
cache memory unit during the sampling period.

The cache memory unit can be a spin-torque transfer cache
memory unit.

Embodiments of the electronic processor can also include
any ofthe other features disclosed herein, in any combination,
as appropriate.

In another aspect, the disclosure features a method for
controlling access to a cache memory unit in an electronic
processor, the method including determining whether an
operation directed to the cache memory unit from a process-
ing core of the electronic processor is a read operation or a
write operation, and if the operation is a read operation that
executes unsuccessfully in the cache memory unit: (a) execut-
ing the read operation in another memory unit; (b) determin-
ing whether the read operation is a cache obstruction; and (c)
writing data obtained in step (a) to the cache memory unit if
the read operation is not a cache obstruction.

Embodiments of the method can include any one or more
of the following features.

The method can include, if the operation is a write opera-
tion that executes successfully in the cache memory unit: (d)
determining whether the write operation is a cache obstruc-
tion; and (e) executing the write operation in the cache
memory unit if the write operation is not a cache obstruction.
The method can include: (f) forwarding the write operation to
another memory unit if the write obstruction is a cache
obstruction.

The method can include, if the operation is a write opera-
tion that executes unsuccessfully in the cache memory unit:
(g) determining whether the write operation is a cache
obstruction; and (h) executing the write operation in the cache
memory if the write operation is not a cache obstruction.

Determining whether the read operation is a cache obstruc-
tion can include: determining a miss rate for the read opera-
tion executed in the cache memory unit; comparing the miss
rate for the read operation to a threshold value; and determin-
ing that the read operation is a cache obstruction if the miss
rate for the read operation exceeds the threshold value. Deter-
mining whether the write operation is a cache obstruction can
include: determining a miss rate for the write operation
executed in the cache memory unit; comparing the miss rate
for the write operation to a threshold value; and determining
that the write operation is a cache obstruction if the miss rate
for the write operation exceeds the threshold value.

The method can include determining the threshold value
based on average latencies of read and write operations
executed in the cache memory unit. The method can include
determining the threshold value based on a number of read
and write accesses to the cache memory unit during a sam-
pling period. The method can include determining the thresh-
old value OAP,,, according to:
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(RD-Trg + WR-Twy)/ (RD + WR)
Titem + Twr

Tonem —

OAPy, =

where T,,.,, 1s an average latency of the other memory unit,
Tz, 1s an average latency of read operations executed in the
cache memory unit, T, is an average latency of write opera-
tions executed in the cache memory unit, RD is a number of
read accesses to the cache memory unit during a sampling
period, and WR is a number of write accesses to the cache
memory unit during the sampling period.

The method can include using an obstruction monitoring
unit connected to a processing core of the electronic proces-
sor and to the cache memory unit to determine the miss rate
for the read operation and the threshold value. The method
can include using the obstruction monitoring unit to compare
the miss rate for the read operation to the threshold value.

The method can include using an obstruction monitoring
unit connected to a processing core of the electronic proces-
sor and to the cache memory unit to determine the miss rate
for the write operation and the threshold value, and to com-
pare the miss rate for the write operation to the threshold
value.

Embodiments of the method can also include any of the
other features and/or steps disclosed herein, in any combina-
tion, as appropriate.

Unless otherwise defined, all technical and scientific terms
used herein have the same meaning as commonly understood
by one of ordinary skill in the art to which this disclosure
belongs. Although methods and materials similar or equiva-
lent to those described herein can be used in the practice or
testing of the subject matter herein, suitable methods and
materials are described below. All publications, patent appli-
cations, patents, and other references mentioned herein are
incorporated by reference in their entirety. In case of conflict,
the present specification, including definitions, will control.
In addition, the materials, methods, and examples are illus-
trative only and not intended to be limiting.

The details of one or more embodiments are set forth in the
accompanying drawings and the description below. Other
features and advantages will be apparent from the descrip-
tion, drawings, and claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic diagram of a processor with obstruc-
tion monitors connected to each of the processor cores.

FIG. 2 is a flow chart showing a series of steps for imple-
menting an obstruction-aware cache management policy.

FIG. 3 is a graph showing instructions per cycle for systems
with SRAM L3 cache and STT-RAM L3 cache.

FIG. 4 is a graph showing the speedup factor for different
individual processes and mixtures of processes on an STT-
RAM L3 cache with an obstruction-aware cache manage-
ment policy.

FIG. 51s a graph showing instructions per cycle for systems
with SRAM L3 cache, STT-RAM L3 cache with a conven-
tional cache management policy, and STT-RAM L3 cache
with an obstruction-aware cache management policy, running
different processes.

FIG. 6 is a graph showing energy consumption for systems
with SRAM L3 cache, STT-RAM L3 cache with a conven-
tional cache management policy, and STT-RAM L3 cache
with an obstruction-aware cache management policy, running
different processes.
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FIG. 7 is a schematic diagram of a computer system that
includes the processor of FIG. 1.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Introduction

In modern processors, deeper memory cache hierarchies
and larger cache capacities are used to support multi-core
architectures. Nonetheless, reduced size and lower power
consumption are important design considerations in spite of
larger cache memories. To realize these design objectives,
new non-volatile memory technologies such as spin-torque
transfer random access memory (STT-RAM) are being
explored as alternatives to conventional static random access
memory (SRAM) and dynamic random access memory
(DRAM) technologies. STT-RAM is particularly well suited
for use in last-level caches such as Level 3 (I.3) cache due to
its relatively small bitcell size (thereby reducing its physical
footprint) and non-volatility (which reduces energy con-
sumption).

STT-RAM is an enhanced variant of magnetic random
access memory (MRAM) in which the basic bit storage ele-
ment is a magnetic tunnel junction. Each tunnel junction
includes two ferromagnetic layers, one with a fixed magneti-
zation direction and the other with a free magnetization direc-
tion. The relative direction of magnetization in the two ferro-
magnetic layers is used to represent “0” and “1” bits. A
switching current flowing from bitline to sourceline aligns the
magnetizations in the two layers along parallel directions,
which represents a “0”. A switching current flowing from
sourceline to bitline orients the magnetizations in the two
layers along anti-parallel directions, which represents a “1”.

As discussed briefly above, compared to conventional ran-
dom access memory technologies such as SRAM, the advan-
tages of STT-RAM are smaller bitcell area and lower leakage
power. At present, the cell size of STT-RAM is currently in
the range from 13 F* to 100 F?, where F is the feature size of
the lithography process (see, for example, T. Kawahara et al.,
“2 Mb spin-transfer torque RAM (SPRAM) with bit-by-bit
bidirectional current write and parallelizing-direction current
read,” IEEE Journal of Solid-State Circuits 43(1): 109-120
(2008), and K. Tsuchida et al., “A 64 Mb MRAM with
clamped-reference and adequate-reference schemes,” in Pro-
ceedings of the International Solid-State Circuits Confer-
ence, pp. 258-259 (2010)). In contrast, current SRAM cell
sizes are approximately 146 F* (see, e.g., S. Thoziyoor et al.,
“A comprehensive memory modeling tool and its application
to the design and analysis of future memory hierarchies,” in
Proceedings of the International Symposium on Computer
Architecture, pp. 51-62 (2008)). Due to its lower cell size, the
use of STT-RAM can significantly reduce the amount of
on-chip area occupied by memory caches.

Further, due to its non-volatility, STT-RAM has zero leak-
age power consumption from memory cells. In contrast, in
conventional SRAM-based Level 2 memory caches fabri-
cated using the 130-nm process for example, leakage power
can be as high as 80% of the total power consumption of the
cache memory. Accordingly, the use of STT-RAM can reduce
cache power consumption considerably.

Table 1 summarizes various properties of a 4-bank, 8-way
8 MB SRAM cache and its STT-RAM counterpart. Simula-
tions of the data in Table 1 were performed using NVSim
according to a performance, energy, and area model based on
CACTI. As is evident from Table 1, STT-RAM has signifi-
cantly reduced area and leakage power relative to SRAM.
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TABLE 1
Parameter SRAM STT-RAM
Cell Factor (F?) 146 40
Read Latency (ns) 11.1 11.4
Write Latency (ns) 11.1 225
Read Energy (pJ) 15.8 17.5
Write Energy (pJ) 13 172
Leakage Power (mW) 14.1 0.144
Area (mm?) 11.5 3.16

Unfortunately, while using STT-RAM in last-level caches
such as L3 cache has numerous advantages, one potential
drawback is the asymmetric speeds of read and write opera-
tions in STT-RAM. As shown in Table 1, for example, the
write latency of STT-RAM can be approximately a factor of
two larger than for SRAM. Moreover, the asymmetric speeds
lead to a significantly higher write energy for STT-RAM. As
a result, directly replacing a SRAM L3 cache with a STT-
RAM cache can cause performance degradation. The prob-
lem can be even more significant in multi-core processors,
where latencies associated with write processes from one
core can affect processes running simultaneously on other
cores.

The long write latency of STT-RAM relative to SRAM
typically causes performance degradation because it leads to
cache port obstruction. Last-level caches such as .3 are gen-
erally implemented using single-port memory bitcell designs
due to the costs associated with implementing multi-port
bitcell designs. For example, a dual-port STT-RAM cell gen-
erally requires at least 4 transistors, resulting in an increase of
the cell layout area by a factor of four. For large-capacity L3
caches, such design schemes are typically cost-prohibitive.

As a result, STT-RAM caches are implemented as single-
port designs, and all read and write cache operations are
directed through the single access port. Thus, a lengthy ongo-
ing STT-RAM write operation can obstruct the port, delaying
subsequent pending read operations on the port and signifi-
cantly degrading the overall performance of the cache. More-
over, when a single-port STT-RAM cache is used in a multi-
core system, an ongoing write operation from one core can
block subsequent read operations to the same cache bank
from not only the same core, but from all other cores in the
system as well.

Cache Management Policies

To reduce performance degradation due to STT-RAM
write latency, the systems and methods disclosed herein
handle read and write requests to cache memory according to
a cache management policy. In particular, the systems and
methods disclosed herein determine whether read and write
requests correspond to cache obstructions before they are
forwarded to the cache. Both read and write requests directed
to the cache can operate as cache obstructions. By re-direct-
ing read and/or write requests that constitute obstructions
away from the cache, latency due to pending cache requests
can be reduced significantly. Furthermore, by re-directing
obstructions away from the cache before they obstruct the
cache rather than after the cache has already been obstructed,
the systems and methods address the potential for cache
obstruction in STT-RAM based memory in a pro-active,
rather than reactive, manner.

Read and write requests diverted from cache memory by
the cache management policy are typically re-directed to
main memory, so that they are properly fulfilled. In this way,
data requests from all processing cores in the system execute
correctly.
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FIG. 1 shows a schematic diagram of a processor 100 with
amulti-level cache hierarchy. While processor 100 includes 4
cores and a 3-level cache hierarchy for illustrative purposes, it
is important to note that the systems and methods disclosed
herein can be used in processors with any number of cores
(e.g., 1 core, 2 cores, 3 cores, 4 cores, 5 cores, 6 cores, 8§ cores,
10 cores, and/or more than 10 cores) and in cache hierarchies
with any number of levels (e.g., 1 level, 2 levels, 3 levels,
and/or more than 3 levels). Typically, cache management is
performed for the last-level cache in the processor. However,
the methods and systems disclosed herein can also be imple-
mented in other cache levels if desired.

Processor 100 includes cores 102, 104, 106, and 108, each
of which includes an associated Level 2 (L.2) cache. Each of
the cores is connected to a single-port shared 1.3 cache 110,
which is in turn connected to main memory 114. Read and
write requests from each of cores 102, 104, 106, and 108 pass
through .3 cache controller 112, which passes the requests to
L3 cache 110 through port 124. Controller 112 manages the
incoming read and write requests to .3 cache 110, directing
the requests to access proper addresses within .3 cache 110.

Obstruction monitors 116,118, 120, and 122 are connected
cores 102, 104, 106, and 108, respectively, between the [.2
cache associated with each core and the shared [.3 cache. The
obstruction monitors are separated from the cache memory
hierarchy, allowing each obstruction monitor to determine
cache access information for the core with which it is asso-
ciated. Each obstruction monitor is also connected to control-
ler 112 so that cache access information for each core is
communicated to controller 112.

During operation of processor 100, controller 112 imple-
ments a cache management policy for [.3 cache 110 that
detects and responds to obstructions at port 124. FIG. 2 is a
flow chart 200 showing steps in the cache management policy
implemented by controller 112. Implementation of the policy
begins when a read or write request from any of cores 102,
104, 106, or 108 is directed to L3 cache 110 through control-
ler 112 in step 202. When controller 112 detects such a
request, controller 112 first determines whether the request is
a read request or a write request in step 204. If the request is
aread request, then in step 206, controller 112 passes the read
request to L3 cache 110, and an attempt is made in step 206 to
read the requested data from [.3 cache 110.

Next, in step 208, controller 112 determines whether the
requested data was successtully read from .3 cache 110 in
step 206. If the requested data was read successfully (e.g., a
“read hit” occurred), then the data is passed to the .2 cache of
the corresponding core in step 210, and process control
returns to step 202 to await another request from one of cores
102, 104, 106, or 108 to L.3 cache 110. If the requested data
was not read successfully from L3 cache 110 in step 206, then
the read request is directed instead to main memory 114 in
step 212, and the requested data is read from main memory in
step 214.

Next, in step 216, controller 112 determines whether the
read request is an obstruction for L3 cache 110. The process
for determining whether a read or write request is an obstruc-
tion will be described in more detail below. If the read request
is a cache obstruction, then in step 218, the data read from
main memory in step 214 is forwarded to the [.2 cache cor-
responding to the core that made the request in step 202, and
process control returns to step 202 to await another request
from one of the cores. By not updating [.3 cache 110 with the
data read from main memory in step 214, controller 112
avoids obstructing [.3 cache 110 with the read request.

Ifthe read request is not determined to be a cache obstruc-
tion in step 216, then in step 220, the data read from main
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memory in step 214 is written to L3 cache 110 in step 220.
Next, the data is forwarded to the corresponding 1.2 cache in
step 218, and then process control returns to step 202 to await
another request from one of the cores.

Returning to step 204, if the request is not a read request,
then it is a write request, and in step 222, an attempt is made
to execute the write request in L3 cache 110. Next, in step 224,
controller 112 determines whether the write request executed
successfully in step 224. If the request executed successfully
(e.g., a “write hit” occurred), then controller 112 determines
whether the write request is a cache obstruction. If the write
request is not a cache obstruction, then in step 228, the data is
written to [L3 cache 110, and process control returns to step
202 to await another read or write request. If the request is a
cache obstruction, then in step 230, controller 112 invalidates
the “write hit” in step 230, and forwards the write request to
main memory 114 in step 232. In this way, when the write
request is a cache obstruction, controller 112 avoids obstruct-
ing L3 cache 110 with the write request. After the write
request is executed in main memory 114, process control
returns to step 202 to await another request from one of the
cores.

If'the write request did not execute successfully in step 224
(e.g., a “write miss” occurred), then controller 112 next deter-
mines in step 234 whether the write request is a cache obstruc-
tion. If the request is determined to be a cache obstruction,
then the write request is forwarded to main memory 114 in
step 236. After the write request executes in main memory
114, process control returns to step 202 to await another read
or write request from one of the cores.

Ifcontroller 112 instead determines that the write request is
not a cache obstruction in step 234, then controller 112 allo-
cates a cache line to the write request in step 238, and the data
is written to L3 cache 110 in step 240. Process control then
returns to step 202 to await another request from one of the
cores.

In the foregoing example, read and/or write requests that
correspond to cache obstructions are re-directed away from
L3 cache 110 in flow chart 200 to main memory 114. More
generally, however, depending upon the memory architecture
of processor 100, such requests can also be directed to other
memory units. For example, in some embodiments, such
requests can be directed to a back-up cache memory, or to
another type of data storage unit.

Identifying Cache Obstructions

In steps 216, 226, and 234 of flow chart 200, controller 112
determines whether a read or write request is a cache obstruc-
tion for L3 cache 110. In this section, methods for determin-
ing whether a particular request constitutes a cache obstruc-
tion will be discussed in greater detail.

The rationale underlying adding another level of cache
(e.g., alast-level cache such as [.3) in memory hierarchy is to
provide fast memory resources so that particular requests
with spatial and temporal locality can preferentially access
the cache rather than the off-chip main DRAM memory, as
access to main memory is substantially more time consum-
ing. Not all processes benefit from preferentially accessing
cache memory, however.

Assuming that the behavior and characteristics ofa process
are not changed during the short period during which the
process executes, if the data of the process is written into the
last-level cache, the expected execution time T for a cache
access, assuming the cache uses fetch-on-write policy, is:

T=Prgx I pat(1-Pra)* Tt Pagics( Dngermt Tors)

ey
where Py, is the read/write ratio, P, is the miss rate of the

cache, T, is the average latency of cache read operations,
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Ty, 1s the average latency of cache write operations, and
T, 18 the average latency of main memory.

For each access miss, new data are fetched from main
memory and written to the cache. The additional latency
associated with fetching and writing the new data are added to
the expected execution time T to yield the total time delay. On
the other hand, if the new data are not written to the cache,
then subsequent operations need to access main memory
directly. Accordingly, the expected execution time for each
access, T, is:

T'=Titem @

If writing data from a process to cache does not yield
improved performance via reduced latency, then T>T', and
Equation (1) can be re-arranged to yield:

Titem = Pra X Tra — (1 = Pra) X Ty
Titem + Twr

®

Ptiss >

When a process satisfies Equation (3) during its execution
time, the process may cause intensive write operations to the
cache so that writing the process data to the cache will extend
the execution time, thereby degrading overall system perfor-
mance. Such a process is defined as a “cache obstruction.”
Referring to Equation (3), it is evident that the likelihood that
a given process will be a cache obstruction is higher when a
STT-RAM cache is used, because the right hand side of
Equation (3) becomes smaller when T, increases, making it
more likely that the inequality will be satisfied. This accounts
for the observation that potential performance degradation is
more problematic for STT-RAM caches than for SRAM
caches.

In processor 100, obstruction monitors 116, 118, 120, and
122 obtain cache access information for cores 102, 104, 106,
and 108, respectively. Using the cache access information, a
particular read or write process can be judged to be a cache
obstruction or not an obstruction. In the following descrip-
tion, obstruction monitors 116, 118, 120, and 122 are config-
ured to determine whether or not a particular process consti-
tutes a cache obstruction. However, other components of
processor 100 can also be configured to make this determi-
nation based on information obtained by the cache monitors.
For example, in some embodiments, controller 112 can be
configured to determine whether a read or write process is a
cache obstruction.

In each of the obstruction monitors, a tunable parameter
T seseer 18 set, and corresponds to a time period during which
the obstruction monitor detects possible cache obstructions.
Each period T ,,.., is divided by the obstruction monitor into
two parts: a first period T,,,,, during which the processor
cache operates under an ordinary cache management policy
(e.g., under a policy that does not detect cache obstructions)
and during which each obstruction monitor measures infor-
mation about cache access by its corresponding core; and a
second period T,,, during which the cache is managed
according to a cache policy that uses information about cache
obstructions collected during the first period.

During the first period T, it is assumed that all read and
write processes are not cache obstructions. Each obstruction
monitor measures quantities relating to cache access by its
corresponding core. These quantities include the execution
time currentTime, the number of read accesses RD, the num-
ber of write accesses WR, and the number of cache misses
Miss. At the end of the first period T each obstruction

sampd
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monitor calculates two parameters, the actual miss rate MissR
and the obstruction threshold OAP,,, as follows:

X Miss 4
MissR = ——
RD + WR

T —(RD-Trqy + WR-T RD + WR 5

0AP,, = Dien ( Rd wr)/ ( ) (5)

Trtem + Twy

If the actual miss rate MissR determined using Equation
(4) is larger than the obstruction threshold OAP,,, then the
process corresponds to a cache obstruction. Otherwise, the
process is not a cache obstruction. During the remainder of
the second period T,,, the process is treated as either as an
obstruction or not an obstruction based on the comparison
between the values of MissR and OAP,, , until the next sample
period T, begins.

The algorithm that executes on each obstruction monitor
during runtime can be represented as follows:

Input: New request sent to cache memory
Output: Status of request as cache obstruction or not an obstruction
Parameters: T yerecn Tsamps Tons> MissR, OAP
if currentTime - startTime == T, then
reset all parameters
label process as non-obstruction
startTime < currentTime

endif
if currentTime — startTime < T, then
if packetIsRead then
RD++ // Update read access count
else
WR++ // Update write access count
end if
if packetIsMiss then
Miss++ // Update miss count
end if
end if

if currentTime - startTime == T, then
calculate OAP,;,, MissR.
if MissR > OAP,;, then
label process as obstruction
else
label process as non-obstruction
end if
end if

The comparison between MissR and OAP,, can be per-
formed by different components of processor 100. In some
embodiments, each of the obstruction monitors compare the
values of MissR and OAP,, for their corresponding cores to
determine whether processes specific to the cores are cache
obstructions. In certain embodiments, the obstruction moni-
tors forward values of MissR and OAP,, for each core to
controller 112, which performs each comparison to deter-
mine whether processes specific to each core are cache
obstructions.

EXAMPLES

The subject matter disclosed herein is further described in
the following examples, which are not intended to limit the
scope of the claims.

The additional hardware overhead imposed by obstruction
monitors 116, 118, 120, and 122 was simulated using the
Synopsys Design Compiler with a 45 nm TSMC CMOS
library. As simulated, the obstruction monitor circuitry occu-
pied only 0.06 mm? on the chip, which is negligible compared
to the total area of the L3 cache (which typically occupies
approximately half of the total chip area). The simulation
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results also demonstrated that it is straightforward to integrate
the obstruction-aware cache policy logic into a conventional
cache controller using bypass circuits. With regard to latency
overhead, the obstruction monitors are separated from the
cache hierarchy and controller 112, and thus they introduce
only a few branch decisions in the overall processor control
flow. Accordingly, no additional latency due to the obstruc-
tion monitors was introduced in the simulations.

To investigate the effects of obstruction-aware cache man-
agement policies, a 1.5 GHz 4-core out-of-order ARMv7
microprocessor was modeled using a modified version of
gem5 (which is described, for example, in N. Binkert et al.,
“The gemS5 simulator,” SIGARCH Computer Architecture
News39(2): 1-7(2011)). The gemS5 simulator was modified to
include an asymmetric read/write latency model, a banked
cache model, and a sophisticated cache write-buffer scheme.
The write-buffer scheme is commonly used in conventional
cache architecture to mask performance penalties due to write
operations. However, the write-buffer size cannot be too large
because of its fully-associative lookup overhead. Thus write-
buffer techniques alone are not sufficient to compensate for
performance degradation due to the long write latency of
STT-RAM. An 8-entry write buffer was used for the simula-
tions described herein.

Various simulation settings that were used are listed in
Table 2. All circuit-level cache module parameters (e.g., read
latency and write latency) were obtained from NVSim and
were consistent with Table 1. NVSim is described, for
example, in X. Dong et al., “NVSim: A circuit-level perfor-
mance, energy, and area model for emerging non-volatile
memory,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 31(7): 994-1007 (2012). The
simulation workloads were taken from the SPEC CPU2006
benchmark suite and are described, for example, at internet
address www.spec.org/cup2006/. Each simulation was per-
formed for at least 2 billion instructions. The obstruction
monitor sampling period was 0.1 million cycles, and the
launching period was set at 10 million cycles.

Instructions per cycle (IPC) were used as the performance
metric. To account for both fairness and performance, the
geometric mean was used to average results for the 4 cores
and determine the speedup metric as:

PG ] ©

speedup = geometricfmem{mm
i

Determination of the speedup metric is described, for
example, inY. Xie et al., “PIPP: promotion/insertion pseudo-
partitioning of multi-core shared caches,” Proceedings of the
International Symposium on Computer Architecture, pp. 174-

183 (2009).
TABLE 2
Core 4-core, 1.5 GHz out-of-order ARM processor
SRAM I-L1/D-L1 private, 32 KB/32 KB, 16-way, LRU, 64 B
Caches cache line, write-back, write allocate, 8-cycle
read, 8-cycle write
1.3 Cache Common shared, 8 MB, 8-way, LRU, 4 banks, 8-entry
write buffer per bank, 64 B cache line, write-
back, write allocate
Obstruction- 17-cycle read, 34-cycle write, with obstruction-
Aware  aware management policy
STT-RAM
Baseline  17-cycle read, 34-cycle write, with no
STT-RAM obstruction-aware management policy
Baseline  17-cycle read, 17-cycle write
SRAM
DRAM Main Memory 4 GB, 128-entry write buffer, 200-cycle
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Example 1

In the first example, to illustrate the write latency of STT-
RAM, two workload mixtures were simulated. In the first
mixture, mix1, four last-level cache friendly workloads (om-
netpp, hmmer, bwaves, and astar) were run on the 4-core
simulated system. In the second mixture, mix2, the first work-
load omnetpp was replaced by cactusADM.

FIG. 3 is a graph showing normalized instructions per cycle
(IPC) for each workload in each of mix1 and mix2, on both
SRAM and STT-RAM L3 caches. For mix1, IPC for each
workload was reduced by less than 5% when SRAM was used
inplace of STT-RAM in the L3 cache. However, for mix2, the
core running the cactusADM workload has reduced IPC of
about 21% using a STT-RAM L3 cache in place of a SRAM
L3 cache, and IPC is reduced for each of the other workloads
by 8% to 13% using STT-RAM in place of SRAM in the L3
cache.

The simulation results show that certain processes such as
the cactus ADM workload constitute cache obstructions that,
when executed in a multi-core system with a STT-RAM L3
cache, will experience performance loss. Such processes can
also negatively affect the performance of other processes
(e.g., the other three workloads in mix2) in the system.
Accordingly, the results demonstrate the effects of having no
cache management policy for STT-RAM based L3 caches.

Example 2

To demonstrate the effect of an obstruction-aware cache
management policy, different processes were simulated on
STT-RAM L3 caches with and without the cache manage-
ment policies disclosed herein. In 8 different simulations,
each of the 4 cores on the simulated processor executed the
same process. In a further 8 simulations, the 4 cores on the
simulated processor executed a mixture (e.g., “mix1” through
“mix8”) of different processes. Table 3 lists the processes in
each of the 8 mixtures that were simulated.

TABLE 3
Simulation Processes
mix1 Ibm + libquantum + sjeng + cactusADM
mix2 povray + mcf + namd + lbm
mix3 bwaves + cactusADM + astar + hmmer
mix4 gee + lbm + libquantum + bwaves
mix5 cactusADM + gee + mef + lbm
mix6 libquantum + bzip2 + bwaves + cactusADM
mix7 Ibm + sjeng + bzip2 + libquantum
mix8 mef + bwaves + sjeng + lbm

FIG. 4 is a graph showing the speedup, calculated accord-
ing to Equation (6), that is realized using an obstruction-
aware cache management policy with STT-RAM L3 cache,
relative to a STT-RAM L3 cache with a conventional (e.g.,
non-obstruction-aware) cache management policy. The simu-
lation results show that after adopting the obstruction-aware
cache management policy, system performance improves by
an average of 14%, and by up to 42% for specific processes.

In general, processes or mixtures of processes that include
more cache obstructions benefit more significantly from
obstruction-aware cache management policies. Because
obstruction monitors can quickly detect cache obstructions
during sampling periods, the cache controller can skip unnec-
essary write operations to the L3 cache for such obstructions.
For simulations with a mixture of processes, performance
improvements were realized from two sources. First, the per-
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formance of individual processes that correspond to cache
obstructions was increased because the cache management
policy skips unnecessary cache write operations for such
processes, thereby eliminating the slowdown associated with
longer write latency for those processes. Second, the perfor-
mance of other, concurrently running processes is also
improved since L3 cache port obstructions are reduced and
the requests of the concurrently running processes can there-
fore be satisfied more quickly. In addition, the number of [.3
cache lines available for non-obstruction processes is
increased because the number of lines allocated to obstruc-
tion processes is reduced. Accordingly, the hit rate for non-
obstruction processes is increased.

Example 3

To compare STT-RAM and SRAM L3 caches, a series of
simulations was performed with both duplicates and mixtures
of processes running on the 4-cores of the simulated proces-
sor. The simulated SRAM L3 cache was configured as shown
in Table 2. STT-RAM L3 caches with (“OAP-STTRAML3”)
and without (“STTRAM L3”) obstruction-aware cache man-
agement policies were also simulated as in Table 2.

In 8 of the simulations, the same process was duplicated on
each of the 4 cores. In 8 additional simulations, a different
mixtures of processes were run on the 4 cores. The mixtures
of'processes used, designed mix1 through mix8, are shown in
Table 3.

FIG. 5 shows normalized instructions per cycle (IPC) for
simulated systems with SRAM last-level cache (“SRAM
L3”), with STT-RAM last-level cache and a conventional
cache management policy (“STTRAM L[.3”), and with STT-
RAM last-level cache and an obstruction-aware cache man-
agement policy as disclosed herein (“OAP-STTRAM [.3”).
The results show that compared to systems with SRAM [.3
cache, STT-RAM L3 cache with a conventional cache man-
agement policy degrades system performance by 13.2% on
average due to the longer write latency of STT-RAM. How-
ever, STT-RAM L3 cache with an obstruction-aware cache
management policy as disclosed herein degrades system per-
formance by only 0.7% on average, a marked improvement
relative to conventional cache management policies.

In addition to performance improvements, using an
obstruction-aware cache management policy with STT-RAM
L3 cache can also yield energy savings relative to SRAM L3
cache. The reduced energy consumption arises because leak-
age power dominates energy consumption in L3 cache, and
the leakage power of STT-RAM is only about 1% as large as
the leakage power of conventional SRAM.

FIG. 6 shows normalized energy consumption for each of
the three simulated systems (SRAM L3, STTRAM L3, and
OAP-STTRAM L3) running the same duplicate processes
and mixtures of processes as in FIG. 5. Due to leakage energy
reduction, an 8 MB STT-RAM L3 cache reduces total energy
consumption compared to a SRAM L3 cache by about 90%.
The STT-RAM L3 cache with an obstruction-aware cache
management policy further reduces total energy consumption
by an additional 64%.

Yet another advantage of using a STT-RAM L3 cache
rather than a SRAM L3 cache is the reduced on-chip area
occupied by the STT-RAM L3 cache. Compared to an 8 MB
SRAM L3 cache, an 8 MB STT-RAM L3 cache occupies
72.5% less chip area, as shown in Table 1.

Hardware and Software Implementation

The method steps and procedures described herein can be
implemented in hardware or in software, or in a combination
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of both. In particular, processor 100 can include software
and/or hardware instructions to perform any of the method
steps disclosed above. The methods can be implemented in
computer programs using standard programming techniques
following the method steps and figures disclosed herein. Pro-
gram code is applied to input data to perform the functions
described herein. The output information is applied to one or
more output devices such as a printer, or a display device, or
a web page on a computer monitor with access to a website,
e.g., for remote monitoring.

Each program is preferably implemented in a high level
procedural or object oriented programming language to com-
municate with a processor. However, the programs can be
implemented in assembly or machine language, if desired. In
any case, the language can be a compiled or interpreted lan-
guage. Each computer program can be stored on a storage
medium or device (e.g., an electronic memory) readable by
the processor, for configuring and operating the processor to
perform the procedures described herein. Each computer pro-
gram can be encoded directly in the logic circuitry of the
processor.

FIG. 7 is a schematic diagram of a computer system 300,
which processor 100 disclosed herein can be a component. As
shown in FIG. 7, system 300 includes processor 100, a
memory 320 (e.g., amain memory), a storage device 330, and
an input/output device 340. Each of the components 100, 320,
330, and 340 are interconnected using a system bus 350.
Processor 100 is capable of processing instructions for execu-
tion within the system 300. In some embodiments, processor
100 is a single-threaded processor. In certain embodiments,
processor 100 is a multi-threaded processor. In some embodi-
ments, processor 100 is a single core processor. In certain
embodiments, processor 100 features multiple processing
cores.

Processor 100 is capable of processing instructions stored
in memory 320 or on the storage device 330 to display graphi-
cal information for a user interface on the input/output device
340. Memory 320 stores information within the system 300.
In some embodiments, memory 320 is a computer-readable
medium. Memory 320 can include volatile memory and/or
non-volatile memory. In general, memory 320 can include
any of the types and architectures of main memory disclosed
herein.

Storage device 330 is capable of providing mass storage for
the system 300. In general, storage device 330 can include
any non-transitory tangible media configured to store com-
puter readable instructions. In some embodiments, storage
device 330 is a computer-readable medium. In certain
embodiments, storage device 330 may be a floppy disk
device, a hard disk device, an optical disk device, or a tape
device.

Input/output device 340 provides input/output operations
for the system 300. In some embodiments, input/output
device 340 includes a keyboard and/or pointing device. In
some embodiments, input/output device 340 includes a dis-
play unit for displaying graphical user interfaces.

The features described can be implemented in digital elec-
tronic circuitry, or in computer hardware, firmware, or in
combinations of them. The features can be implemented in a
computer program product tangibly embodied in an informa-
tion carrier, e.g., in a machine-readable storage device, for
execution by a programmable processor; and features can be
performed by a programmable processor executing a pro-
gram of instructions to perform functions of the described
embodiments by operating on input data and generating out-
put. The described features can be implemented in one or
more computer programs that are executable on a program-
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mable system including at least one programmable processor
coupled to receive data and instructions from, and to transmit
data and instructions to, a data storage system, at least one
input device, and at least one output device. A computer
program includes a set of instructions that can be used,
directly or indirectly, in a computer to perform a certain
activity or bring about a certain result. A computer program
can be written in any form of programming language, includ-
ing compiled or interpreted languages, and it can be deployed
in any form, including as a stand-alone program or as a
module, component, subroutine, or other unit suitable for use
in a computing environment.

In particular, the features and methods disclosed herein can
be implemented in digital electronic circuitry and/or logic
encoded in processor 100 and/or in another component of
system 300. In some embodiments, the encoding medium is a
non-volatile storage medium such as one or more read-only
memory chips that can be accessed by processor 100 during
runtime.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors of any kind of computer. Gener-
ally, a processor will receive instructions and data from a
read-only memory or arandom access memory or both. Com-
puters include a processor for executing instructions and one
or more memories for storing instructions and data. Gener-
ally, acomputer will also include, or be operatively coupled to
communicate with, one or more mass storage devices for
storing data files; such devices include magnetic disks, such
as internal hard disks and removable disks; magneto-optical
disks; and optical disks. Storage devices suitable for tangibly
embodying computer program instructions and data include
all forms of non-volatile memory, including by way of
example semiconductor memory devices, such as EPROM,
EEPROM, and flash memory devices; magnetic disks such as
internal hard disks and removable disks; magneto-optical
disks; and CD-ROM and DVD-ROM disks. The processor
and the memory can be supplemented by, or incorporated in,
ASICs (application-specific integrated circuits).

The features can be implemented in a computer system that
includes a back-end component, such as a data server, or that
includes a middleware component, such as an application
server or an Internet server, or that includes a front-end com-
ponent, such as a client computer having a graphical user
interface or an Internet browser, or any combination of them.
The components of the system can be connected by any form
or medium of digital data communication such as a commu-
nication network. Examples of communication networks
include, e.g., alLAN, a WAN, and the computers and networks
forming the Internet.

The computer system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a network, such as the described
one. The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

Processor 100 carries out instructions related to a computer
program, including any of the instructions disclosed herein.
Processor 100 can include hardware such as logic gates,
adders, multipliers and counters. Processor 100 can further
include a separate arithmetic logic unit (ALU) that performs
arithmetic and logical operations.
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Other Embodiments

The methods and systems disclosed herein have been dis-
cussed for use with STT-RAM caches, as such caches have
write latencies which exceed their read latencies, which can
result in cache obstructions. More generally, however, the
methods and systems disclosed herein can be used with a
variety of different memory types and architectures includ-
ing, for example, other types of memory with asymmetric
read and write latencies. In addition, the methods and systems
disclosed herein can be used with memory types that do not
have significant differences in read and write latencies.

A number of embodiments have been described. Neverthe-
less, it will be understood that various modifications may be
made without departing from the spirit and scope of the
disclosure. Accordingly, other embodiments are within the
scope of the following claims.

What is claimed is:

1. A method for controlling access to a cache memory unit
in an electronic processor, the method comprising:

determining whether an operation directed to the cache

memory unit from a processing core of the electronic

processor is a read operation or a write operation; and

if the operation is a read operation that executes unsuccess-

fully in the cache memory unit:

(a) executing the read operation in another memory unit;

(b) determining whether the read operation is a cache
obstruction by determining a miss rate for the read
operation and an obstruction threshold value based on
execution of the read operation in the cache memory
unit by the processing core; and

(c) writing data obtained in step (a) to the cache memory
unit if the read operation is not a cache obstruction.

2. The method of claim 1, further comprising, if the opera-
tion is a write operation that executes successfully in the
cache memory unit:

(d) determining whether the write operation is a cache

obstruction; and

(e) executing the write operation in the cache memory unit

if the write operation is not a cache obstruction.

3. The method of claim 2, further comprising (f) forward-
ing the write operation to another memory unit if the write
obstruction is a cache obstruction.

4. The method of claim 2, further comprising, if the opera-
tion is a write operation that executes unsuccessfully in the
cache memory unit:

(g) determining whether the write operation is a cache

obstruction; and

(h) executing the write operation in the cache memory if

the write operation is not a cache obstruction.

5. The method of claim 2, wherein determining whether the
write operation is a cache obstruction comprises:

determining a miss rate for the write operation executed in

the cache memory unit;

comparing the miss rate for the write operation to a second

obstruction threshold value; and

determining that the write operation is a cache obstruction

if the miss rate for the write operation exceeds the sec-
ond obstruction threshold value.

6. The method of claim 5, further comprising using an
obstruction monitoring unit connected to a processing core of
the electronic processor and to the cache memory unit to
determine the miss rate for the write operation and the second
obstruction threshold value, and to compare the miss rate for
the write operation to the second obstruction threshold value.

7. The method of claim 1, wherein determining whether the
read operation is a cache obstruction comprises:
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measuring information about cache access by the process-
ing core during a sampling period of execution of the
read operation in the cache memo unit;

determining, based on the measured cache access informa-

tion, the miss rate for the read operation executed in the
cache memory unit and the obstruction threshold value
at the end of the sampling period;

comparing the miss rate for the read operation to the

obstruction threshold value; and

determining that the read operation is a cache obstruction if

the miss rate for the read operation exceeds the obstruc-
tion threshold value.

8. The method of claim 7, further comprising determining
the obstruction threshold value based on average latencies of
read and write operations executed in the cache memory unit.

9. The method of claim 7, further comprising determining
the obstruction threshold value based on a number of read and
write accesses to the cache memory unit during the sampling
period.

10. The method of claim 7, further comprising using an
obstruction monitoring unit connected to a processing core of
the electronic processor and to the cache memory unit to
determine the miss rate for the read operation and the obstruc-
tion threshold value.

11. The method of claim 10, further comprising using the
obstruction monitoring unit to compare the miss rate for the
read operation to the obstruction threshold value.

12. The method of claim 1, wherein determining the
obstruction threshold value comprises:

determining the obstruction threshold value OAP , accord-

ing to:

Totem — (RD-Try + WR-Tuy) / (RD + WR)
Titem + Twr

OAPy, =

where T,,.,, 1s an average latency of the other memory unit,
Tz, 1s an average latency of read operations executed in the
cache memory unit, Twr is an average latency of write opera-
tions executed in the cache memory unit, RD is a number of
read accesses to the cache memory unit during the sampling
period, and WR is a number of write accesses to the cache
memory unit during the sampling period.

13. An electronic processor, comprising:

a cache memory unit;

n processor cores, wherein n=1;

a controller connected to the cache memory unit and to

each of the n processor cores; and

n obstruction monitoring units, wherein each obstruction

monitoring unit is connected to the controller and to a
respective one of the n processor cores,

wherein during operation of the electronic processor, each

obstruction monitoring unit is configured to detect an
obstruction corresponding to an operation from the
respective processor core connected to the obstruction
monitoring unit by determining a miss rate for the opera-
tion and an obstruction threshold value based on execu-
tion of the operation in the cache memory unit by the
respective processor core.

14. The electronic processor of claim 13, wherein during
operation of the electronic processor, the controller is config-
ured to prevent operations that correspond to obstructions
detected by the n obstruction monitoring units from executing
in the cache memory unit.

15. The electronic processor of claim 13, wherein n is 2 or
more.
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16. The electronic processor of claim 13, whereinn is 4 or
more.
17. The electronic processor of claim 13, wherein each of
the n processor cores is connected in parallel with the con-
troller and with one of the n obstruction monitoring units.
18. The electronic processor of claim 13, wherein each
obstruction monitoring unit is configured to detect an
obstruction corresponding to an operation by:
measuring information about cache access by the respec-
tive processor core during a sampling period of execu-
tion of the operation in the cache memory unit,

determining, based on the measured cache access informa-
tion, the miss rate and the obstruction threshold value at
the end of the sampling period,

comparing the miss rate for the operation to the obstruction

threshold value, and

determining that the operation is a cache obstruction if the

miss rate exceeds the obstruction threshold value.
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19. The electronic processor of claim 13, wherein each
obstruction monitoring unit is configured to determine the
obstruction threshold value OAP,, according to:

Thtem — (RD - Trg + WR-Tu,) | (RD + WR)

OAPy, =
" Titem + Twr

where T,,,,, 1s an average latency of a memory unit connected
to the processor, T, is an average latency of read operations
executed in the cache memory unit, T, is an average latency
of'write operations executed in the cache memory unit, RD is
a number of read accesses to the cache memory unit during
the sampling period, and WR is a number of write accesses to
the cache memory unit during the sampling period.

20. The electronic processor of claim 13, wherein the cache
memory unit is a spin-torque transfer cache memory unit.
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